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Preface

This thesis is the result of the research I did on Switched Current Circuits. The work was
carried out, at the Electronics Institute at the Technical University of Denmark, in the period
September 1, 1992 to February 28, 1995.

This thesis consists of 17 chapters grouped into four major parts: Theory, Applications,
Appendices and Publications.

The Theory part treats both basic and advanced topics of switched current circuits. In
this part we show how basic sampled data systems can be build using Switched Capacitor
(SC) and Switched Current (SI) techniques. We also identify the limiting factors in SI circuits
and show how to design enhanced current copiers that overcome some of those limitations.
Then we show how current copiers can be put together in order to build some of the basic
building blocks used in many practical applications e.g. sample delays, delay lines, integrators
and differentiators. We also discuss some more advanced topics such as nonlinear settling
errors and optimization.

The Applications part gives examples of switched current circuits that have been imple-
mented in silicon. This part covers topics such as filters, serial A/D and D/A converters,
Sigma-Delta modulators and adaptive filters.

The Appendices part covers topics such as sampling of noise, current transmission errors
and switching transients, matching and MOS transconductors. The presentation of these
topics is done so they easily fit into the Theory part of this thesis.

The Publications part is an collection of enclosed copies of the papers that T have published
during my Ph.D. study.

Examples

The text in this thesis contains several examples that are used to illustrate some ideas,
concepts and circuits. The examples are recognized as sections of text having the following
layout.

Example 0.0.1
This is an example of an example. Please notice that the end of all examples is marked with
a small black box. m
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Abstract

English

This thesis focuses mainly on SI circuits. The treatement of the SI technique is most of the
time kept on a high level using transconductors instead of transistor. It is the authors believe
that this results in an easier and clearer understanding of the operation of the SI circuits
because the circuits are not cluttered with confusing transistors circuits. When needed,
transistor circuits are presented in order to show specific implementation details or novel
circuitry.

Basic techniques for sampled data system design is presented, and it is shown that linear
signal processing functions using nonlinear components in both SI and SC techniques are
feasible and that they rely on the same common principles.

The design of current copiers and sampled data building blocks is presented in details, this
applies to both single ended and differential circuits. The limitations found in current copiers
are discussed and novel new implementations of SI building blocks are presented.

The effect of nonlinear settling errors on the operation of SI circuits is illustrated and it is
shown that nonlinear settling errors are caused by the nonlinear transconductors used in the
current copier cells. Simulations are presented that show that the effect of the nonlinear
settling is an increase in Total-Harmonic-Distortion (THD) with the frequency of the signals.
Techniques for reduction of the nonliear settling errors are outlined and it is shown that
highly linear SI circuits require the use of linear transconductors and high bandwidth (large
bias current).

Optimization of ST circuits with regards to noise properties is presented and an optimization
methology is outlined that can be used to optimize SI circuits for minimum power consump-
tion for a given Signal-To-Noise-Ratio (SNR). This optimization methology has further been
used in the design of two Sigma-Delta modulators and in the design of an adaptive filter. It is
shown that circuits operating in weak inversion are not feasible for the SI technique because
of the limited voltage swing found in these circuits.

Practical applications of the SI technique are presented and it is demonstrated that high order
filters with good tracking between highpass and lowpass sections, using only MOS transistors
and gate-capacitors, are feasible. Also, a serial A/D and D/A conversion system is presented
that is capable of offset compensating and converting the current from a MAGFET! transistor
to a seven bit digital value. This system is implemented in a 1.5um digital CMOS process
using only MOS transistors. An adaptive filter with 96 filter taps is implemented in SI
technique. The filter is designed to estimate the transfer function of a micromechanical flow
channel in order to estimate the flow rate of a fluid flowing in that channel. Also, the design
of two Sigma-Delta modulators is presented and a brief discussion of high order modulators
is given.

IMOS transistor sensitive to a magnetic field

iii
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Dansk

Denne athandling omhandler hovedsageligt SI kredslgb. Gennemgangen af SI teknikken er
for det meste holdt pa et overordnet niveau, ved brug af transkonduktans forstaerkere istedet
for transistorer. Det er forfatterens overbevisning, at dette vil lette forstaelsen for hvordan
SI kredslgbene fungerer, fordi kredslgbene ikke bliver forvirrede af uoverskuelige transistor
kredslgb. Nar det er ngdvendigt, anvendes specifikke transistor kredslgb for at illustrere
implementerings detaljer og nye kredslgbs koblinger.

Grundlzegende teknikker for tidsdiskrete analoge kredslgb er praesenterede og det bliver vist
at lineaere signal behandlings funktioner v.h.a. ulinesere komponenenter i bade SI og SC
teknik er mulige, og at de er baserede pa de samme grundlaeggende principper.

Design af current copiers og tidsdiskrete byggeblokke bliver praesenteret i detaljer, dette
geelder bade for almindelige og differentielle kredslgb. De begraensninger der ligger i current
copiers bliver diskuterede og nye implementeringer af SI byggeblokke bliver pracsenteret.

Effekten af ikke linezere settling fejl pa funktionen af SI kredslgb er illustreret og det bliver
vist at ulinexre settling fejl skyldes de ulinezre transkonduktans forstaerkere, der bliver
brugt i current copier cellerne. Der bliver pracsenteret simuleringer, der viser at effekten af
ulineeere settling fejl er en stigning af den harmoniske forvreengning (THD) med frekvensen
af signalet. Teknikker til reduktion af de ulineaere settling fejl bliver skitseret og det bliver
vist, at meget linezere SI kredslgb kraever at man bruger linesere transkonduktans forstaerkere
og hgj bandbredde.

Optimering af ST kredslgb m.h.t. stgj egenskaber bliver pracsenteret, og en optimerings metode
bliver skitseret, som kan bruges til at optimere SI kredslgb for et minimalt effekt forbrug for
et givet signal stgj forhold (SNR). Denne optimerings metode er endvidere blevet brugt til
design af to Sigma-Delta modulatorer, og til design af et adaptivt filter. Det bliver vist at
kredslgb der fungerer i weak-inversion ikke er velegnede til SI kredslgb p.g.a. det begraensede
speendings sving i disse kredslgb.

Praktiske anvendelser af ST teknikken bliver prassenteret, og det bliver demonstreret at hgjere
ordens filtre med god tracking mellem hgjpas og lavpas sektionerne er mulige, alene baseret
pa MOS transistorer og gate-capaciteter. Ogsé et serielt A/D og D/A konverterings system
bliver presenteret, der er i stand til at offset kompensere, og konvertere strommen fra en
MAGFET? transistor til et syv bit tal. Systemet er implementeret i en 1.5um digital CMOS
process, alene v.h.a. MOS transistorer. Et adaptivt filter med 96 filter koefficienter er blevet
implementeret i SI teknik. Filteret er beregnet til at estimere overforings funktionen af en
mikromekanisk flow kanal for at man skal kunne estimere flow hastigheden af en vaeske i flow
kanalen. Der bliver ogsa presenteret to Sigma-Delta modulatorer, og der bliver givet en kort
diskusion af hgjre ordens modulatorer.

2en MOS transistor der er fglsom overfor et magnetisk felt
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Introduction

The development of integrated circuit processing technology has now reach a stage where
it is possible to integrate several millions transistors on a single chip. Chip’s containing
approximately 10 million transistors have been reported.

Processing technology is being tuned for optimum performance for digital circuits. This
implies shrinking device sizes for increasing speed and lowering the supply voltage for reduced
power consumption.

It is mainly digital circuits that have gained most from the evolving processing technology.
It is therefore natural to se more and more signalprocessing function performed digitally.

Large analog chip’s are rare now at days. The analog circuitry is now mostly used for
interfacing the digital circuits to the outside world. The main functions for analog circuits,
in mixed mode designs, are therefore data conversion and filtering.

Traditionally switched capacitor (SC) circuits have been used extensively in the analog in-
terface portion of mixed mode integrated circuits. They have been used for filtering , A/D
and D/A conversion and many other interfacing functions.

Switched current (SI) circuits have recently been proposed as a possible replacement or
an alternative to SC circuits in mixed mode designs. The motivation for this has been that
processing technology is being tuned for digital designs implying that there might be no
good analog components left such as: large double poly capacitors etc. which normally are
required in SC circuits.

Also, it has often been said that SI circuits can be designed using modest circuitry, i.e.
only MOS transistors and nonlinear capacitors e.g. gate-source capacitors, which of course
make SI circuits perfect for digital CMOS processes.

In this thesis I will show that the above statements are only true with some slight modifi-
cations. It will be shown that linear SC circuits can be designed using nonlinear capacitors,
making SC circuits compatible with digital CMOS processes and that high performance SI
circuits do require the same circuit complexity as SC circuits.

The main objective of this thesis is to investigate techniques for design of SI circuits with
performance comparable to SC circuits. This implies that we look at different current copier
cells and how to enhance them, it also implies that we look at noise in SI circuits and how
to design for low power and low noise. Also, because SI circuits are inherently nonlinear we
look at how nonlinear settling affects the operation of SI circuits.

Switched capacitor circuits can in most cases be analyzed as being linear circuits and there
exists a lot of different design and analysis tools for SC circuits. There is however one crucial
difference between SC and SI circuits. SI circuits are inherently nonlinear. Because of this
difference it is necessary to use different design tools to make full use of the SI technique.
Some efforts have been made to designing tools for SI circuits, but all of these tools assume
that SI circuits are linear. Until now the only tool available for simulating nonlinearities in
SI circuits has been SPICE.

XX
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As long as small circuits are being analyzed, such as current copiers etc., it is possible to
use SPICE, but for moderately large SI circuits such as Sigma-Delta Modulators it is not
feasible to use SPICE for simulating the effect of nonlinearities in the SI circuits because of
the excessively long simulation time.

Because of these limitations, I have in this thesis combined several tools, in order to cope
with the complexity and simulation requirements of the SI circuits. Some of these tools are:
PSPICE, which is used for detailed circuit level simulation, although it sometimes results
in excessive simulation times. C++, which is used for behavioral level simulations, making
it possible to simulate the effect of nonlinear settling errors on large SI circuits. MATLAB,
which is used for optimization of SI circuits and for post processing of simulation results.



Part 1
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Chapter 1

Basic Techniques for Sampled Data
Systems

The aim of this chapter is to introduce the most basic building blocks used in most analog
sampled data systems today i.e. switched—capacitor [1][2][3] and switched—current circuits.
The main point in this introduction will be to show that both SC and SI circuits are com-
patible with digital CMOS processes (single Poly processes), i.e. CMOS processes that do
not support large linear floating capacitors, and that linear analog sampled data systems
can easily be built using nonlinear capacitors (voltage dependent) in the SC case and using
nonlinear transconductors and capacitors in the SI case.

This chapter also introduces signal flow graphs (SFG) as an powerful tool for analyzing
and synthesizing SI circuits. It is assumed that the reader is familiar with the notation
of z-transforms as it is the fundamental tool for describing sampled data systems just as
laplace-transform is used for describing continuous-time circuits.

1.1 Switched Capacitor Circuits using Nonlinear Capacitors

It is well known that linear scaling of signal currents is possible using current mirrors, that
are based on transconductors with a nonlinear relationship between the input voltage and
the output current (MOS transistors). In a similar way it is also possible to design switched
capacitor (SC) circuits performing linear signal processing using nonlinear capacitors. This
can be done by using charge mirrors [4].

The consequence of this fact is that linear SC filters can be implemented without the
need for double Poly processes i.e. they can be implemented in digital CMOS processes.

In order to illustrate the operation of the charge mirror, we will assume that the capacitors
that are voltage dependent have the following relationship between capacitance and voltage.

C = C(v) = Co(1 4 c1v + cov?) (1.1)

here () is the zero voltage capacitance and v is the applied voltage on the capacitor. The
coefficients ¢; and cg represents the degree of nonlinearity. This type of voltage dependence
is implemented in SPICE exactly as shown in the above equation. When a capacitor has a
voltage dependence as shown in the above equation, the orientation of the capacitor becomes
important if the voltage dependence contains odd order terms such as c;.

The current through the capacitor is found as the derivative of the voltage times the

23
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capacitance

dv
b: — 1 — T — —
=05 Co(L+ v+ exv )dt o\ 2% @ T3 a4

d dv 1 d(v?) 1 d*
2 v C ( v (U ) + —c ﬂ) (12)
The charge on the nonlinear capacitor can be found by integrating the current through the

capacitance
1

1
q= /Z dt = Cy <U + 5011}2 + 502U3> =Cof(v) (1.3)

From this equation we see that the charge on a nonlinear capacitor can in general terms be
represented as some zero voltage capacitance Cp multiplied by a nonlinear function f(v) of
the applied voltage.

1.1.1 Charge Scaling

If we want to perform linear signal processing of charges we can do that utilizing charge mir-
rors. A charge mirror capable of performing linear charge scaling, using nonlinear capacitors,
is shown in Fig. 1.1. Please note that the orientation of the nonlinear capacitor is explicitly
shown with the plus (+) and minus (—) signs. The operation of the charge mirror shown in

1%

o

= G, f(vey)
9,

L

Figure 1.1: Linear charge mirror utilizing nonlinear capacitors

Fig. 1.1 can be described in the following way: The input charge g1 enters the inverting input
of the operational amplifier and is put on the capacitor C; this gives the following voltage
across the capacitor C

—q1 = C1f(vey) & vo, = f*l(%f) (1.4)

Assuming that the operational amplifier is ideal, i.e. the voltage at the negative input (-) is
zero (Virtual Ground), the voltage at the output of the operational amplifier is given by

vy = vey = f*(%f) (1.5)

this voltage is applied to the capacitor Cy, which gives a charge of

g = Caf (vo) = @f(f*l(%?)) (1.6)

the function of the inverse function, f(f~!(-)) = (-), cancels out and we end up with the
following relationship for the charge transfer

42 = —q1~- (1.7)
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This shows that the circuit will act as a inverting linear charge mirror, with a mirroring factor
determined by the ratio between the zero voltage capacitors. The constraint for getting linear
charge transfer is that the two capacitors C1 and Cy must have the same voltage dependence
f(+), and that they are orientated in a way so that their nonlinearities are adjacent as shown
in Fig. 1.1.

Example 1.1.1

This example illustrates that it is possible to get a linear relationship between input charge
and output charge using nonlinear capacitors. This example is based on the configuration
shown in Fig. 1.1. The capacitors C; and Cs have both the following nonlinearities: ¢; = 2
and co = 3. Also the zero voltage capacitors are C1 = 10pF and Cy = 20pF. The input

0.00

-0.50

Vo

5

Voltage [V]
S—

-1.50

-2.00
5.00E-7 150E6 250E6 350E6
0.00E+0 1.00E-6 2.00E-6 3.00E-6 4.00E-6
2.00E-11
1.00E-11
0.00E+0 [ [
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000E+0 ™" 100e6 *° 2006 **° 30026 **° 400E6

Time [3]

“lianyc |v|

Figure 1.2: Relationship between input charge packets and output charge. Simulation per-
formed using PSPICE

to the charge mirror is a periodic sequence of charge packages ¢1 each carrying a charge of
10pC. The charge packages are accumulated on the capacitor Cy, and this gives the output
voltage v, shown in Fig. 1.2. We notice that there is a nonlinear relationship between the
output voltage v, and the charge q;.

Also in Fig. 1.2 we see the charge ¢o put on the capacitor Co. We notice that for each
charge package g of 10pC' entering the charge mirror, the charge on capacitor Cy is decre-
mented by 20pC'. This indicates that the circuit operates as an inverting charge mirror with
a scaling factor of Cy/C71 = 20pF/10pF = 2, as expected. ®

1.1.2 Integrator

Most switched capacitor circuits rely on the use of integrators. It is therefore of great interest
to be able to design switched capacitor integrators using nonlinear capacitors. The circuit
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in Fig. 1.3 shows how it is possible to perform linear signal processing utilizing non-linear
capacitors. In Fig. 1.3 there are two linear capacitors C7,Cy and two nonlinear capacitors

C, f(vey) C,
I I
1 G 2 _vlcl_, 1 Ciflves) 2 '
Yy~~~ ~ — e ~
+ —
2 l ]j VOAI 2 lVC3 1 VOA2 Vour

Figure 1.3: Cascade of two parasitic insensitive SC integrators utilizing nonlinear capacitors.

Cy, (3. The linear capacitor C is used to convert the input voltage v;ny to a linear charge
q1 on clock phase 1. This charge is then on clock phase 2 put on the nonlinear capacitor Cs.
On clock phase 1 the nonlinear voltage at the output of operation amplifier VOAL is placed
on the nonlinear capacitor Cs, which then gets a charge corresponding to

Co
= —q1— 1.
q2 q1 ) ( 8)

as shown in the previous subsection on Charge Mirrors.

The first operational amplifier VOA1 together with the nonlinear capacitors Co and Cj
acts as a linear charge mirror. On clock phase 2 the linear charge on the nonlinear capacitor
('3 is put on the linear capacitor Cy, which in turn gives a linear output voltage at the output
of operational amplifier VOA2.

1.2 Switched Current Circuits using Nonlinear Elements

The basic building blocks necessary for design of SI circuits are a switch, a grounded capacitor
and an inverting transconductor. The capacitor and the transconductor do not have to be
linear, although it will be shown later in Chapter 4, that in order to design SI circuits with
low distortion it is necessary to consider the nonlinearities in the ST circuit elements.

The switch used in a SI circuit can be a NMOS,PMOS or CMOS switch depending on the
actual implementiation and on the use of the switch. The capacitor can be the gate-source
capacitance Cgg of a MOS transistor or it can be some other capacitor probably a MOS
transistor coupled as a MOS capacitor. The transconductor can be build using a variety
of configuration depending upon the application of the SI circuit. It can be a simple single
transistor transconductor (Most often used for illustration) or it can be more complex using
variety of cascoding arrangements for enhancing the performance. It can also be both single
ended or fully differential and operating in class A or class AB. Different implementations of
SI circuits will be described in Chapter 2 and Chapter 3.

The operation of SI circuits is based on the conversion of a signal current to a corre-
sponding signal voltage, using a transconductor. The signal voltage can then be stored on a
capacitor for later use, where it then is converted back to a signal current using a transcon-
ductor. The transconductors used for converting the signal current to a voltage and then
back to a signal current again needs not be the same.
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1.2.1 Current Scaling

All signal processing operations rely on the possibility of amplification or signal scaling of
some sort. In switched current circuits we want to be able to amplify and scale signal
currents. This operation is basically done using current mirrors. In Fig. 1.4 OTAO is used

OTA1
iy»—— I I I, ;
IN VIN—Q >_> ! []/10 Ly
OTAO
]_7 102
Ly,

OTAn

Figure 1.4: Current Mirror used for amplification or scaling of signal currents and the corre-
sponding signal flow graph (SFG).

for converting the input current i;y to a voltage vy that is applied to the inputs of the
transconductors OTA1 to OTAn. Each transconductor contains a current I,, that represents
the scaling factor of nonlinear transconductor. We have that:

N

irn = lof(vin) & vin = fﬁl(I—O) (1.9)
and the output current from transconductor i is given by:
) _1,%IN . I
ioi = —Lif(vin) = —Lf(f (7)) = —iin— (1.10)

To o

So the current at output 7 will have a scaling factor of —1I;/I;. We observe that in order to
get a linear current scaling any nonlinear transconductor can be used the only restriction is
that all the transconductors should have the same nonlinearity.

For example a linear current mirror can be designed using MOS transistors. It is nec-
essary for the MOS transistors to have equal threshold voltages in order to have the same
nonlinearity. The nonlinearity for a MOS transconductor, operating in saturation, is given
by

2
i= g(VGSO +v—Vr)? = g(VGSO — Vr)? (1 + m> =Ipf(v) (1.11)
N——
o f(v)

in this equation Vggp is the quiescent gate-source voltage and v is the signal voltage.

1.2.2 Current Memories

A current memory is a circuits element capable of storing a current. To store a current we
have to convert it to a voltage that then can be stored on a capacitor. For converting the
current to a voltage we will make use of a transconductor. Two different methods for storing
a current will be described, a 1st generation current memory [5][6][7][8][9][10][11][12] and a
2nd generation current memory (current copier) [13][14][15][16][17][18][7][19][20]. In Fig. 1.5
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OTA1 ; OTA2 2d
%
Iy P—t —§ 2 > lour:
i 2
I
"
iIN,I(Z)c > ° iOUT,Z(Z)

Figure 1.5: 1st generation current memory and the corresponding signal flow graph (SFG).

we have a first generation current memory it is basically a traditional current mirror with
a switch. Multiple outputs are possible by connecting more than one transconductor to the
voltage v1. It operates as follows: OTA1 is used for converting the input current ¢7x 1 to a
voltage vyy. This voltage is then, on clock phase 1 when switch S7 is closed, applied to the
capacitor C1. When switch S is opened the voltage vry is stored on the capacitor C7, and
is then converted back to a current by the transconductor OTA2.

On clock phase 1 we have that:

. 1,7
i = hf(eny) & vy = £ (112)
and on clock phase 2 we have that:
) 4,0 . I
iovre = —f(vin) = —Lf(f 1(%)) = *ZINJI—? (1.13)

So this kind of current memory has a optional scaling determined by —1I;/I. The accuracy
of this scaling will be determined by how accurate the two transconductors can be matched.
As with the current mirror we only get a linear operation if the transconductors have the
same nonlinearity.

If we use the same transconductor for converting the signal current to a voltage and the
voltage back to a signal current we can avoid any matching problems and we also ensure
that the nonlinearity is the same which results in a higher linearity. Such a circuit is shown
in Fig. 1.6. In Fig. 1.6 we have a second generation current memory. It operates as follows:

1 1d '
— Iy,
y 2d
! — —> iOUT.Z
C'T Oral
—1/2

. —Zz .
Iy o > ° loyr>

Figure 1.6: 2nd generation current memory (Current Copier) and the corresponding signal
flow graph (SFG).

OTA1 is used both for converting the input current to a voltage and for converting the voltage
back to a current.



CHAPTER 1. BASIC TECHNIQUES FOR SAMPLED DATA SYSTEMS 29

On clock phase 1 we have that:

. 4,1
in1=1f(v1) v =Ff 1(%) (1.14)
and on clock phase 2 we have that:
. 1,0 A .
ioura = —1f(vr) = —Lf(f " (=72) = —irvag = —inva (1.15)

So the 2nd generation current memory has a scaling factor of —1. It is very accurate because
it does not depend upon matching of different transconductors. However if we want multiple
current outputs we have to connect the other transconductors to the voltage v;. The output
current from these extra outputs will have the same accuracy limitations as for the 1st
generation current memory.

All of the current memory circuits described in this chapter utilize a two phase nonover-
lapping clock scheme. All switches that connect directly to a storage capacitor operate either
on clock phase 1 or 2. All other switches operate on clock phases 1d or 2d, where d denotes
a small delay. This notation can be seen in Fig. 1.5 and Fig. 1.6. The timing of the clock
phases is shown in Fig. 1.7. This clock scheme insures that the voltage held on the storage

clock phase

e
d 1T -
2 [
2d |1 L

Figure 1.7: Timing of the clock phases used in the current memories

capacitors represents the correct input current and that it is not influenced by errors induced
from the other switches in the circuit.

In order to make the circuits more readable the delay d is not necessary explicitly shown
in the circuits (see Fig. 1.8 and Fig. 1.9).

1.2.3 Sample Delay

The operation of the current copier is basically an inverting half sample delay —z~'/2. In
order to generate a whole sample delay z~! we can simply cascade two current copiers as

shown in Fig. 1.8. The transfer function of this sample delay is easily seen from the SFG as
H(z)= (=2 V) (=2 V) =271 (1.16)

Example 1.2.1

An implementation of the sample delay in Fig. 1.8, using simple current sources and transcon-
ductors, is shown in Fig. 1.9. A simulation of the sample delay shown in Fig. 1.9 has been
performed for a single current pulse at the input with a duration of one clock period. The
simulation was performed using the parameters shown in Table 1.1.  From the simulation
results in Fig. 1.10 we see that the relative error of the current pulse at the output of the

sample delay is:
9.689uA

10pA

=1-0.9689 = 0.0311 ~ 3.1% (1.17)
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Figure 1.8: Sample delay using cascading of two current copiers and its corresponding SFG.
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Figure 1.9: Implementation of a sample delay using single MOS transistors as transconduc-

tors.

This is indeed a large error that in most practical situation would be unacceptable. From
this we conclude that it is necessary to identify the error sources and enhance the circuits in
order to reduce the errors so that the circuits can be used. This will be the subject of the

next chapter. B
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Table 1.1: Parameters used in the simulation of the implemented sample delay

| Parameter | Value ‘
I 20pA
N 10pA

Avi = Avsy 0.47v
C1 =09 10pF
fs 512k H =

1.50

vl

145

1.40
=

1.30

125
1.20 \ v2

Voltage [V]

115

1.10
100E-6 300E-6 5.00E-6
0.00E+0 2.00E-6 4.00E-6

1.20E-5

10uA 9.689 UA

1.00E-5

8.00E-6

6.00E-6

4.00E-6

“UIICIIL A

2.00E-6

0.00E+0
000Et0  “™°  200e6 **™°  400E6 °™°

Time [s]

Figure 1.10: Simulation of the implemented sample delay for a single input current pulse



