Chapter 11

Conclusions

In this thesis we have mainly focused on SI circuits. We have shown that circuits performing
linear signal processing operations can be built from nonlinear components. This applies
to both ST and SC circuits, effectively making SC circuits compatible with digital CMOS
processes as well as SI circuits. We have shown that linear signal processing using nonlinear
components relies on careful matching of the nonlinearities found in the components.

By treating the SI circuits on a high level using transconductor and current conveyors, we
are able to show how many of the already well known current copier cells, and some new
ones, can systematically be derived. Based on this high level treatment of current copiers,
we are also able to elegantly derive many already known SI building blocks and some new
ones. This is done by sharing current conveyors and reducing switches.

It is my hope, that this approach gives a clearer and more fundamental understanding of
the operation of the SI circuits.

Simulations have been performed, that confirm the theoretical prediction of the increase of the
THD with the signal frequency. These simulation have shown that when using asymmetrical
transconductors in the current copiers, it is advantageous to have a equal number of CCOP’s
in the signal path, because this has the effect of canceling a lot of the even order distortion
caused by the settling errors etc. We have also shown that in terms of power consumption,
it is more economical to increase the bias current than to decrease the modulation index, in
order to reduce any settling errors.

From noise analysis of SI circuits we have shown that there exists an optimal choice of
saturation voltages and modulation index, that minimizes the power consumption, the storage
capacitance etc. We have also shown that using constrained optimization, these saturation
voltages and modulation index can be found.

We have shown that the SNR depends only on the choice of saturation voltages and
modulation index, it does not directly depend on the bias current. The bias current is
determined by the settling errors and the operating speed of the circuitry.

We have shown that using the switched current technique it is possible to design 4th or-
der lowpass and highpass filters, with good tracking between the cut-off frequencies of the
highpass and lowpass filter sections, using relatively simple circuit configurations. Operation
with supply voltages down to 2V is possible with a power consumption of 200uW .

In order to avoid severe stability and settling problems we have shown that SI filters
should be based on building blocks that do contain at least one sample delay between input
and output. Therefore it is not a good idea to use differentiators and bilinear integrators as
basic filter building blocks, because it can lead to high power consumption and low SNR. SI
filters should preferably be based on sample delay integrators.
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We have shown that it is feasible to implement a multiplierless adaptive filter with 96 fil-
ter taps in switched current technique, with small power consumption and reasonable chip
area. A chip containing 96 filter taps occupies an area of 3.8mm x 3.8mm and contains
approximately 9500 MOS transistors.

We have shown that a low cost serial A/D and D/A system can be build using relatively
simple SI building blocks, and implemented fully in a digital CMOS process. By combining
successive approximation with a serial conversion scheme we are able to produce a A/D and
D/A converter that reuses the same hardware in both A/D and D/A mode of operation.

Operation with supply voltages down to 2.3V is possible with a current consumption of
38.5uA.

For Sigma-Delta modulators implemented in ST technique we have shown, that for a given
SNR, the power consumption is independent of the oversampling ratio R, and depends only
on the required SNR. We have also shown that each time we increase the SNR by 6dB we
have to increase the power consumption by a factor of four. Therefore a large SNR is very
expensive in terms of power consumption.

The main limiting factors in the design of high performance YA Modulators is the linearity
of the Voltage to Current (V — I) transformation and the high power consumption needed
for large Signal-To-Noise-Ratios. Also high SNR requires small settling errors that only can
be achieved by using large bias currents or linearized transconductors.

In order to cope with these problems a study of linear transconductors and of highly linear
Voltage to Current (V — I) circuits is necessary. Also for A/D Modulators with large dynamic
range it might be advantageous to use some sort of floating point scheme i.e. have some sort
of automatic scaling of the signals at the input of the modulator.
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Appendix A

MOS Transconductors

This appendix introduces many of the most common transconcuctors, and tries to describe
many of their most important properties. In this description of the most common transcon-
ductors we will only consider transconductors using MOS transistors operating in strong
inversion and saturation.

The description of the transconductors is deliberately done using the saturation voltage
Av = (vgs — V) as a key parameter. The saturation voltage for a MOS transistor is the
minimum drain-source voltage that is required in order to keep the transistor in its saturated
region.

The reason for focusing on the saturation voltage is that it is a very useful design param-
eter when designing SI circuits. This is mainly because it allows for easy calculation of the
necessary voltage drops in the SI circuits.

A somewhat similar description of various transconductors is given in [25], but this de-
scription does not focus on the saturation voltage Av as a key design parameter.

A.1 The MOS Transistor

The simplest MOS transconductor that we have is the single MOS transistor shown in
Fig. A.1. The description of this transconductor will be done using the simple Schiman
and Hodges model (SPICE Level one). This is mainly done because this model allows for
easy hand calculations of the transistor parameters. The basic and most important relation-

Figure A.1: A single MOS transistor

ships for this transistor is the relationship between the drain current i and the gate-source
voltage vgg, we have that

i= g (vas — Vr)* , vps > (vas — Vr) = Av (A1)
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From this equation we can now find the gate-source voltage as a function of the threshold
voltage Vr and the saturation voltage Awv

24
vas = Vr + 6 =Vr+ Av (A.2)

The transconductance is found as the derivative of the drain current with respect to the

gate—source vollage vG s
=0 VGS V = . A.3

- dvas

A.2 The Compound MOS Transistor

A compound MOS transistor is a combination of a single NMOS transistor and a single
PMOS transistor as shown in Fig. A.2. We will show that the compound MOS transistor
is equivalent to a single MOS transistor, with an effective gate-source voltage given by the
voltage drop v; — vy and a threshold voltage equal to the sum of the threshold voltages of the
individual MOS transistors. An equation describing the effective gate-source voltage v1 — v

i

v]Tl Ml

Vesi—
Vsca+

vw—| M2
i
Figure A.2: A compound MOS transistor
is given by

v — V2 = VEs1 + USG2 (A.4)

(Vi1 + Vo) + \/7 \/7 (V1 + Vo) 4+ (Avy 4 Avg) (A.5)

(V1 + Virg) + V2i <\/_ \/@>

this equation can be written as

vy —ve = (Vp1 + Vo) + \/% , where 3 = (\/_ﬁfi% (A.7)

From the above equation we can now find the relationship between the drain current ¢ and
the effective gate-source voltage v; — ve.

. B

=3 (01 = v2) = (Vi1 + Vi2))? (A.8)
The above equation shows that a compound MOS transistor operates as a single MOS tran-
sistor with a threshold voltage equal to the sum of the two threshold voltages and with an
effective gate-source voltage determined by the voltage difference between the gates v1 — vs.
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The transconductance of the compound MOS transconductor can be found using (A.3)

27

= A.
Avy + Avg (A-9)

Im

A.3 The MOS Differential pair

One of the most important and most widely used transconductors is the MOS differential
pair shown in Fig. A.3. For this differential pair we will derive some very important equations
describing the relationship between the differential output current i = i1 —i2 , as a function
of the input differential voltage vp = v1 — v9. We will also derive the relationship between
the differential transconductance g,, and the differential voltage. And at last we will show
a relationship between the source voltage vg and the voltage v; and vy. For the differential

Figure A.3: MOS Differential pair

pair we have that the sum of the two drain currents is given by
i1+ 10 = Ig (A.lO)
and the saturation voltage of the two transistors M1 and M2 is given by

Avy = Avg = Avg = % (A.11)

A.3.1 Relationship between output current and differential voltage

From Fig. A.3 we have that the differential voltage vp is given by
Up = U] — V2 = UGs1 — VGS2 (A.12)

assuming that the two transistors M1 and M2 have the same threshold voltages we get that

w o= (A13)

| (A.14)
23 23 4911
2 1 2 102
v = — 4+ — —2 A.15
2 4

= Gls— ViR (A-16)
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from the above equation we get that the product of the two drain currents ¢; and 4o is given

by )
o Is B
21 19 = <? — Z 2D> (Al?)

If we apply a large differential voltage vp at the differential pair, one of the transistors M1 or
M2 will be cut off and the current in the second transistor will saturate at Ig. Therefore the
product of the two drain currents at the maximum differential voltage vp maz Will be zero.
Using this fact we can find the maximum differential voltage from (A.17)

Is B,

) - ZUD,maac =0 (A18)
which gives
21
U%,mam = 78 (A]_Q)
)
I
UDmaz = V2 ES =v2Avg (A.20)

This equation shows that the maximum differential voltage vp mqgz, i-e. the differential voltage
that saturates the differential pair, is v/2 higher than the saturation voltage Awg of the
transistors used in the differential pair.

If we multiply (A.10) with 4; and combine that result with (A.17) we get the following
equations

P2 iy -ip = iy-Ig (A.21)
U
I 2
z’%+<§—§v}g> —i1-Ig = 0 (A.22)

This is a simple quadratic equation and the solution is easily found as

2
. Is + \/15 4 (I—S )
11 = (A23)

- IS ‘/F 1—— (A.24)

By combining the above equation with (A.10) and (A.20) we get that the two drain currents
71 and 79 can be written as

1 v 1 v 2
. S D S D
11 =—+ —4|1—=0.5 A.25
1 2 UD,mazx \/5 (UD,ma:r) ( )
and
2

. Is vp s vp

19 = — — —4|1—-0.5 A.26

2 2 UD mazx \/§ UD mazx ( )

From the two above equations we get that the differential output current ¢p is given by

2
st/i\j 1-05 ( D > (A.27)

UD mazx

Ip =1 — 1y =
UD mazx

In Fig. A.4 we have plotted (A.27).
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id/ls

-0.50

Figure A.4: Relationship between differential output current and differential input voltage
for a MOS differential pair

A.3.2 Relationship between transconductance and differential voltage

The voltage dependent transconductance of the differential pair can be found as the derivative
of (A.27).

2
o 1= (vp e Is
a—D = gm(vp) = gmoM » where gmo = (A.28)
(5} 1 op )2 vs
- UD,max )

In Fig. A.5 we have plotted (A.28).

A.3.3 Relationship between source voltage vs and the voltages v; and v

When we apply a differential voltage to the differential pair shown in Fig. A.2, the voltage
vg at the source of M1 and M2 increases. A equation describing the relationship between
the voltage vg an the applied voltages v1 and vy can be found by noting that

vs = VU1 — UGSl (A.29)
vs = V2 —UGES2 (A.30)

which gives us the following relationship

_uitv ves1 +uGs? (A.31)

vs 2 2

From (A.25) and (A.26) we can derive the voltages vgg1 and vgge which when inserted into
the above equation, gives
MYy Aw (22 (A.32)

2 UD,mazx

vs =
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Figure A.5: Relationship between transconductance and differential input voltage for a MOS
differential pair

where the function f(-) is given by

zvV1 — 0.5x2 —V2zv1 — 0.5x2
o) V1+v2eVT=05 ;r\/l V2zVT=05 As3)
RGN o)
; V2
~ 1-0.2852% , x € [~1;+1] (A.35)

(A.34)

This function is plotted in Fig. A.6.

A.4 Resistor Degenerated Differential pair

Very often a MOS differential pair is linearized using resistor degeneration, as shown in
Fig. A.7. The two resistors in the differential pair in Fig. A.7 will have a local feedback effect
on the transistors M1 and M2, reducing the small signal transconductance and increasing
the input voltage range. The small signal transconductance with the two resistors is given
by

9m0
= Jm A.36
T gaoRs (4.56)
where g, is the transconductance without resistor degeneration, which is given by
Is
= A.37
9mo AUS ( )
The voltage drop vgg across the resistors Rg is given by
I
URg = Rs—s (A.38)

2
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Figure A.7: A MOS differential pair degenerated with two resistors

By combining (A.36), (A.37) and (A.38) we get that the small signal transconductance can
be written as

g = —Im0__ (A.39)

B 1+ 272

So the linear input voltage range has been increased from

Is

Viin,0 = —— = Avg (A.40)
'm0
to o
I 1+25=
Vin,Rs = — = Ig——2% = Awg + 2uR, (A.41)
Im 9mo

The above equations show that by using resistor degeneration, the input voltage range of
the MOS differential pair is increased by two times the voltage drop vgry across the source
resistors Rg.
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A.5 Linear MOS Transconductors

In some applications it is desirable to have a transconductor with a linear relationship between
the input voltage and the output current. None of the previously described transconductors
have that property. A linear transconductor can be build from MOS transistors by reliing
on their square-law relationship between the gate-source voltage and their drain current, see

(A.1).

—[, M1 M2 ||
Vesi_ _Ves2

Figure A.8: MOS transistors used in a linear transconductor

Assuming that the two transistors M1 and M2 in Fig. A.8 have the same threshold voltage
Vi and the same (3, we get that the two drain currents i; and 79 can be written as

2

i1 = g (vas1 — Vr)? = g (0%51 + Vit — 2VTUGS1) (A42)
2

iy = g (vas2 — Vi) = g (U%‘sz + Vi~ 2VTUG32) (A.43)

By subtracting the two currents above, we get that the differential output current is given
by

ip = 1 —i2= g (”%51 — Visa — 2Vr(vast — szz))
= g ((vas1 + vas2) — 2Vr) (vast — vas2) (A.44)

This equation shows that it is possible to get a linear transconductor from the two transistors
shown in Fig. A.8 if are able to ensure that (vgs1 —vgs2) is proportional to the input voltage
and that (vgs1 + vase) is constant and equal to twice some commonmode voltage i.e

VaS1 —VGS1 = UD (A.45)
2Ve (A.46)

vGas1 +vGsi

By rearranging the above equations we get that the gate-source voltages are given by

vas1 = Vc-}-U?D (A.47)
ves2 = Vi —%7 (A.48)

These equations show that in order to get a linear differential output current from the two
MOS transistors shown in Fig. A.8, we have to make sure that each of the gate-source
voltages vgg1 and vgge varies linearly with the input voltage vp. If we compare the two
above equations with Fig. A.8 we notice that the commonmode voltage Vo must be equal to

Vo = Vi + Avg (A.49)
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Assuming that we have satisfied the above constraints we get from (A.44) that the dif-
ferential output current is given by

ip = BVe—Vr)vp = gmvp (A.50)

= PAvsvp (A.51)

If we insert (A.47) and (A.48) into (A.42) and (A.43) we get that the two output currents i;
and io can be written as

i = g ((VC — Vi) + 1’;)2 = g <AU5 + 1;21))2 (A.52)
iy = g ((VC V) - ”;)2 - g (AUS - UQD)Q (A.53)

These equations show that each of the output currents i¢; and iy will have a square-law
relationship with the input differential voltage vy, and that the difference i between the
output currents i; and 72 will be linear as expected. The linear relationship only holds as
long as both of the output current are not zero. Based on this we find the minimum and
maximum differential input voltage to be

UDmin = —2Avg (A.54)
UDmaz = +2Avg (A.55)

Also we have that the sum of the drain currents i; and is is given by

i14is = BAVE+ %PD (A.56)
2
%m + gv% (A.57)

which shows that the sum of the output currents consists of a constant term plus a term that
varies with the square of the input differential voltage. The constant term is equal to twice
the quiescent current in each of the transistors M1 and M2 shown in Fig. A.8. Therefore the
quiescent current in each of the transistors M1 and M2 is given by

Is B, 9

- ==Av A58

S =L (A58)
If we insert (A.55) into (A.51) we get that the maximum linear differential output current
can be found to be

iD,maw = ﬁAUSQAUS = 2ﬁAU?§‘ (A59)

which is four times the quiescent current in each of the transistors M1 and M2. The output
currents i1, io and ip are shown in Fig. A.9

A.5.1 Linearized MOS Differential pair

We have previously described the behavior of a MOS differential pair and found that it has a
highly nonlinear relationship between its output current and input voltage, see (A.27). It is
however possible to linearize a MOS differential pair using adaptive biasing as we will show
now. From (A.24) we get that the differential output current can be written as

ﬂQ
ip =vp\/Blg — IUQD (A.GU)
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Figure A.9: Plot of the output currents of the linear MOS transconductor

A linear transconductor will have the following relationship between its output current and
its input voltage
iD = UDYgm (A.61)

If we compare this equation with (A.60) we see that it might be possible to linearize a MOS
differential pair by controlling the tail current Ig in a suitable manner. From (A.60) we see
that Ig should be controlled so that the transconductance

32
gm = \| Bls — ZU% (A.62)

is independent of the differential voltage vp i.e.

2
_ Im é 2

This equation is exactly the same as (A.57) which indicates that the adaptive biasing scheme
actually performs the linearization by ensuring that the gate-source voltages of the two MOS
transistors, that form the differential pair, vary linearly with the input differential voltage.



Appendix B

Current Transmission Errors

When designing useful SI circuits e.g. Filters and A /D converters we have to combine several
current copiers and current mirrors in order to design the fundamental building block e.g.
integrators, differentiators etc.

The current copier and the current mirror can be thought of as being the most fundamen-
tal building block for any SI circuit. It is therefore interesting to identify the errors associated
with the interconnection of these basic building blocks [51][26][6][9][20]. To illustrate this we
will look at the connection of current mirrors and current copiers. In Fig. B.1 we have a

Figure B.1: A current output feeding the input of a current mirror.

situation where we want to transmit the current iy from the current mirror CMI1 to the
input of the transconductor i;x in current mirror CM2. For simplicity we will assume that
the all of the transconductors have the same small-signal transconductance g, and the same
small-signal output conductance g,. It is now easy to realize that the transfer function from
touT to 17N is given by

N o gm Ly 98 g 5L (B.1)
iour  9m+290 14292 gm A;
Im

From this equation we see that there will be some current loss determined by the ratio
9m/Jo 1.e. by the intrinsic gain of the transconductors. If we e.g.use single MOS transistors
as transconductors the intrinsic gain will be limited to about 200 giving a current loss of
approximately 1%. For most practical SI circuits this is far to much. From this fact we are
led to the conclusion that simple SI circuits based on single MOS transistor transconductors
will have a very poor performance.

In Fig. B.2 we have a situation where we want to transmit the current stored in a current
copier CCOP1 to the input of an other current copier CCOP2. The current copiers are shown

178
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Figure B.2: A current copier in hold mode feeding the input of an other current copier in
the copy phase.

with most of their parasitics. From this figure we can identify the following conductance’s

Cr
Y, = go+5C, + gm—0uos— B.2
9o+ 5Co + gm 57— (B.2)
Yi = go+gm+s(Cs+C,) (B.3)

we can now calculate the transfer function from igyp to i;y as being

I; _ 9m _ Im
It Yo+Yi  5(Cs+ Co)+ gm + 290 + gm ooy

(B.4)

We know that the output current iopy7 is a sampled and held i.e. a current step. Using this
fact we can calculated the current transfer from igyr to iy for t — oo

1 Lin _ 9m 1

lim s— = = (B.5)
=0 s low gm0+ Imepoy 1280+ i
Yo Cr
~ 1-2—=— — B.6
4m_ Cr 4 Cs (B.6)

This is actually the same result as we found for the current mirror with the exception of an
extra term caused by the feedback capacitance Cp.

From the above calculations we observe that in order to decrease the transmission errors
it is necessary to decrease g,/gm and to decrease Cp/Cg.



Appendix C

Switching Transients

The signals carried around in a switched current circuit are current pulses. These current
pulses have a high frequency content and will therefore cause some transients and ringing
in the circuit elements [14][15][24][25]. In order to identify the most significant transients
we will look at the copy phase and output phase of a current copier. In Fig. C.1 we have a

+ <

Figure C.1: A current copier in its copy phase.

current copier including all major parasitics even the on-resistance r¢ of the feedback switch.
We will assume that we are feeding this current copier from an other current copier i.e. the
input current will be a step function.

In the ideal case there would be no parasitics Cr, C,, g, and the switch on-resistance 7
would be zero. This would lead to a single pole system where vg = vo. The transfer function
from i;y to vg would be given by

= — , Wp =
Lin,  gms+uwo Cs

Vs 1 wo _ 9m (1)

here wqg is the bandwidth of the current copier. This simple exponential settling behavior
described by the above equation is desirable because it leads to fast settling response.

In most practical SI circuits, the settling behavior is not described by a simple first order
system because of the parasitics found in the circuit. By investigating the circuit in Fig. C.1
we see that we have two basic nodes which gives the following node equations

s(Cs+CF) +gs — (sCp + gs) Vs | _| 0 ©2)
gm — (sCr+gs) s(Cr+Co) + go+ s v, iIN :

180
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from these equations we can derive the following approximate transfer function

98
Vs _ s _ Cs(Cr+Co) (C.3)
I; SQCS(CF + CS) + 8Cs9s + gmJs 52 + S(CF%,S-CO) + CS(gCTngiCO)
the denominator polynomial in the above transfer function can now be written as
<S + s >2 4(CF + Co)gmgs — ggCS (C 4)
Q(CF + Co) 405(0}7 + 00)2 ’

this denominator polynomial determines the stability properties of the circuit, and we can
now classify the settling behavior of the current copier in its copy phase, as shown below

e Damped
4(Cp + C)gmgs — g°Cs < 0 <= w —Im 9 C5
( F )g g gsLs 0 Cs I(C Co) ( )

e Critical damping

A(Cp + Cy)gmgs — g2C = 0 _9m _ 9 C.6
(Cr + Co)gmygs — 95Cs < wo Cs  4(Cr+0y) (C.6)

e Oscillating

A(Cp + Cy)gmgs — g2Cs > 0 S — C.7
(CF + Co)gmgs — g5Cs > 0 & wy Cs>4(CF+Co) (C.7)

From these equations we see that in order to avoid oscillating settling behavior we have to
make sure that the time constant Cg/gy, of the CCOP is not made smaller than four times
the time constant made from the switch on-resistance ry and the parasitic capacitors Cg and
Co.

In high-speed SI circuits one might get into problems with oscillating settling behavior
because the bandwidth of the CCOP must be high, i.e. a small time constant, in order to
allow for the high operating speed.

In low-noise SI circuits one would have to use a large storage capacitor C'g in order to
get low kKT'/C noise. This implies that low-noise SI circuits will normally experience damped
settling behavior dominated by the bandwidth of the current copier. It is however possible to
get oscillating settling behavior in low-noise SI circuits, especially if the large storage capaci-
tance Cg is the gate-source capacitance of the transconductor transistor. A large gate-source
capacitance requires a wide transistor leading to a large drain-bulk junction capacitance
which contributes directly to the output parasitic capacitance. In order to circumvent oscil-
lating settling behavior in low-noise SI circuits it is often advantageous to make a part of the
storage capacitance Cg separate from the transconductor transistor e.g. by using a separate
MOS capacitor.

In Fig. C.2 we have a situation where the output of current copier CCOP1 is connected
to the input of current copier CCOP2. Fig. C.2 is basically derived from Fig. B.2 and will
be used to illustrate the transient found at the output of a CCOP when it is connected to
the input of an other CCOP.

We will assume that current copier CCOP1 has previously been loaded with some current
and that the settling behavior was damped and dominated by the bandwidth of the current
copier itself. This implies that the capacitors Cs and C, have been charged to the same
voltage vgg. We will also assume that there is stored no current in current copier CCOP2
when it is connected to current copier CCOP1.
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Figure C.2: A current copier in its hold phase while feeding the input of an other current
copier.

We have in Chapter B discussed how the transfer function from iop to i7y is determined
after all transients have died out. Now we will focus on how the transient voltage vo behaves.

From Fig. C.2 we get the following relationship

vso _ L _ 9m
Vv (S) _ s (SCO gm) = Cs+2C, - Cs+2C, (C 8)
o - Y Y = Uso Cp Cp .
i1+ Yo gm+2go+gmcs+—cF gm+290+gmcS+—CF
§ T 510, s|s T52C,

the corresponding time function can be found using inverse Laplace transform

" Co L—e ! (C.9)
voll) =vs0 | 7—F~€ - o Cp '
Cs +2C, 1+24 4 o b
where c
o = gm+290+ngS+FCF ~ Wy = Im (C.10)
Cs +2C, Cs ‘

The transient voltage given by (C.9) has been plotted in Fig. C.3 and we see that the

Vo
A

vo G ]
Ce+2C,

v
~

Vso
go + CF
8w Cs+Cp

142

Figure C.3: Settling response given by (C.9)

parasitic output capacitance C, gives raise to a voltage spike in the opposite direction of the
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final voltage. The effect of this is a lengthening of the overall settling time, which can be
very problematic in very high speed SI circuits where the storage capacitor C's might be in
the same order of magnitude as the output parasitic capacitor C,.

Also from Fig. C.3 we notice that the final voltage at the output of CCOP1 or the final
input voltage of CCOP2 has been exposed to current transmission errors as described in
Chapter B.



Appendix D

Clock Feedthrough and Charge
Injection

In this chapter we show how a lumped model for a MOS switch can be derived. The lumped
model is the used to derive the switch induced error voltage on a switched capacitor. The
switch induced error voltage is investigated for fast and slow switching.

Based on the results for the switched capacitor, the effect of charge injection and clock
feedthrough is illustarted for a current copier and an integrator.

D.1 Modeling the MOS switch

Before we can analyze the effect of charge injection and clock Feedthrough we have to have
a model of the switch. A switch can be either a NMOS, PMOS or CMOS switch depending
on where it is to be used. We will here show how to model a NMOS switch, this model
can then be used to model both PMOS and CMOS switches. In Fig. D.1 we have a

Figure D.1: NMOS transistor used as switch

Ve

Cod cdx] cdﬂ[ o _cdyi LCOV
Vi L\/—l\/_\/—\/—J/_\/— --- M v,

| rdx  rdx rdx |

» X

0 J2
Figure D.2: A distributed RC model for the NMOS transistor
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NMOS transistor used as a switch between two points with voltages v1 and vo. When the
gate-voltage v is somewhat higher than v; and vy (larger than the threshold voltage of the
transistor) the switch is on, otherwise the switch is off. At the time when the switch is to be
turned off, the two voltages v; and vy are normally the same. This implies that the transistor
M1 is operating in its linear region. When M1 is in its linear region we can use a distributed
model [52][53][54], as shown in Fig. D.2. This figure shows that the transistor consists of two
overlap capacitors Coy and of a distributed channel. Here L is the channel length, cdz is the
channel capacitance in the infinitesimal channel length dz and rdz is the channel resistance
in the infinitesimal channel length dz.

The channel can be broken into infinitesimal sections as shown in Fig. D.3. Based on

Ve
cdx
v(x,1) T v(x+dx,t)
. P N—>,
0 | rdx i(x+dx, 1)

X
X x+dx

Figure D.3: A small section of the distributed RC model of the NMOS transistor

Fig. D.3 we can now derive a partial differential equation, describing the relationship between
the channel voltage v(x,t) and current i(z,t) and the gate voltage vg. From Fig. D.3 we
have that:

v(z,t) = wv(x+dz,t)+rde-i(x,t)
0
i(z,t) = —;gg (D.1)
i(x +dx,t) = i(z,t)+ cdr- W
!
g—; = c- 76(1}%; v) ~c- BaLtG (D.2)

the approximation performed in (D.2) is valid because we know that the variation of the
channel voltage v is much smaller than the variation of the gate voltage vg. By combining
(D.1) and (D.2) we derive the following equation

821) 81)@
W >~ —rc- E (D3)

By solving this equation we can get an expression for the channel voltage v(z,t), which when
inserted in (D.1) gives the channel current i(z,t). This expression is given by

u%o=<%—§)qﬂ-5? (D.4)

where Cox is the channel capacitance, i.e. Cox = C,HxWL.



APPENDIX D. CLOCK FEEDTHROUGH AND CHARGE INJECTION 186
Vo

Yon | 1

—a
Vion 4+ - - - -

— !

tOF F tFALL

Figure D.4: Voltage at the gate of the switch

In order to simplify the rest of our derivation of the lumped model of the switch, we will
assuming that the gate voltage of the switch, when turned off, has the appearance shown in

Fig. D4
When the switch is turned off, the gate voltage vg goes from a high voltage Vo to zero
volts, as shown in Fig. D.4. The slope of the falling gate voltage is shown as a = —%’—ta. The

time it takes the gate voltage of the switch to reach zero volts is denoted by tpar. When
the gate voltage vg of the switch falls below the voltage Vpon the channel in the switch
disappears (the switch is off). The time instant where this happens is denoted by torr.
The voltage Vr,,, is the sum of the input voltage vy and the voltage dependent threshold
voltage, (Bulk effect) Vr(vrn), of the switch. Therefore the voltage V,,, can be written as

Vioy = vin + Vr(vin) (D.5)
= UIN—|—VTO+’Y(\/2‘(I)|+’U[N7\/2|(I)|> (D6)

Because of the bulk effect, the point where the switch turns off will have a nonlinear rela-
tionship with the input voltage vry. This will of course result in some distortion dominated
by even order harmonics. Using Taylor expansion, the above equation can be written as

Y
V; ~ 1+ ——— | +V D.7
Ton UIN( 2 2|<I>> To (D.7)

Assuming that the switch gate voltage has the relationship shown in Fig. D.4, we get
from (D.4) that the current at the end points of the switch is given by

i(0,t) = +%-a (D.8)
i(L,t) = —%-a (D.9)

Based on these equations, the switch can be modelled as shown in Fig. D.5.

The two current sources, each drawing a current a - Cox /2, are only active until the
switch is turned off. On the other hand the two overlap capacitors, Coy, are active all the
time. In Fig. D.5 R is the voltage dependent channel resistance [54] that is given by

1

= B(va — Vron) (D-10)
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Figure D.5: Lumped Model of a NMOS switch; (a) switch is in its on state; (b) switch is off

D.2 Switched Capacitor

One very simple circuit containing switch induced charge injection and clock feedthrough is
shown in Fig. D.6. This circuit shows a signal source, vyy, feeding a capacitor, C7, through
a NMOS switch M1. If we exchange the switch with the model that we previously derived,
we get the circuit in Fig. D.7. From Fig. D.7 we see that the charge injection and the

Ve

Al

Viv C,=F vy

Figure D.6: Voltage signal source, feeding a switched capacitor

a C,==vq

Figure D.7: Switched capacitor with a lumped model for the switch

clock feedthrough is only affected by the part of the switch connected directly to the storage
capacitor Cy. Based on this it is now possible to derive the following equation [52][53] ,
describing the voltage of the storage capacitor after the switch has been turned off, taking
into account the voltage dependent channel resistance R.

Cov +92%  [raC / C
e = vy — OVC1 P 251 erf ((V()N — Vron) %) - VTONﬁ (D.11)

where erf(-) is the error function. From the above equation we are now able to investigate
the effect of slow and fast turn-off of the switch.
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Example D.2.1
This example will illustrate the switch induced error voltage on the capacitor as a function
of the turn-off rate a and the input voltage v;y. For this purpose we will make use of the

circuit shown in Fig. D.6 and the parameters shown in Table D.1. These parameters are for
a standard 2.4y CMOS process.

Table D.1: Parameters used for the switched capacitor circuit

| Parameter | Value |
Von 5.0V
Cl 1pF
W/L 10pm/2.4pm
Cov 0.0018pF
ChHx 0.812f F/um?
K’ 5TuA/V?
Vr, 0.9V
¥ 0.3
2|®| 0.7V

Slow turn-off When the switch is turned off very slowly i.e. a — 0 we get from (D.11)
that the switch induced error voltage is given by
Cov

Vo — VN = *VTONicOV e (D.12)

this equation shows that for very slow switching, the switch induced error voltage on the
capacitor is dominated by the clock feed-through, through the overlapp capacitor Coy. If we
insert (D.7) into the above equation we get that the relationship between the switch induced
error voltage and the input voltage vry is given by

ve—viN =—vN | 1+ 7 Cov e %r Cov
2y/2|®| ) Cov + C1 Cov + C1

(D.13)

Fast turn-off When the switch is turned off very fast i.e. a — 0o we get from (D.11) that
the switch induced error voltage is given by

Cov + 9 Cov
Cy Cov + (1

this equation shows that the switch induced error voltage on the capacitor is made from the
same contribution as found for slow switching, with the addition of an extra term caused by
the charge ejected from the channel of the switch. If we insert (D.7) into the above equation
we get that the relationship between the switch induced error voltage and the input voltage

Ve —VIN = — (Von —Vron) — Vron (D.14)

vrN is given by

Cox
2C4

— (Von — V1)

i > Cox (D.15)

2y/|®] ) 2C,
In Fig. D.8 the switch induced error voltage is illustrated, for different switching ratios,
as a function of the input voltage. These curves have been found by performing a circuit

VC — Vin = Vin (1 +
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Figure D.8: Switch induced error voltage for different switching ratios

simulation of the circuitry shown in Fig. D.6 using PSPICE. We notice that for input voltages
larger than approximately 3.5V, all of the curves join with the same switch induced error
voltage. For an input voltage of 3.5V we have that the voltage Vron is equal to Vron =
4.76V i.e. close to the voltage Vpon. Therefore the largest input voltage the switch can handle
is 3.5V.

If we insert the values shown in Table D.1 into the equations (D.14) and (D.15) we can
predict that the switch induced error voltage for slow switching is given by

vo — vin = —vrn - 0.00212 — 0.00162V (D.16)

and for fast switching
ve — vy = vrn - 0.01149 — 0.04V (D.17)

By comparing these predictions with the actual simulations shown in Fig. D.8 we see that
they are fairly accurate.
In general terms we have seen that the switch induced error A can be written as

A:Oé-U[N*ﬂ (D.18)

D.3 Current Copier

Until now we have discussed how to model the switch and how this model can be used to
determine the switch induced error voltage on switched-capacitor. Based on these previous
results we are now able to determine how the switch affects the behavior of a single current
copier. In Fig. D.9 we have a current copier where the feedback switch is shown as a MOS
transistor Mg and the other switches are shown as ideal switches. This is because it is only
the feed-back switch that causes switch induced errors on the storage capacitor Ci. The
reason for this is that this switch is turned off before any of the other switches.
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Figure D.9: A current copier showing the switch that causes errors

Assuming that we turn-off the feedback-switch very fast, we have seen from the previous
sections that there will be little or no equalization through the switch on-resistance. Therefore
half of the charge from the switch is dumped on the storage capacitor C leading to an error
voltage equal to (D.15).

This error voltage will give raise to both linear and non-linear effects at the output of the
current copier.

If we however turn-off the switch rather slowly there will be almost no error voltage on
the storage capacitor (' because the transconductor will equalize the error [55].

D.3.1 Linear effects

Assuming that the transconductor is perfectly linear and has a transconductance of g, the
signal voltage on the storage capacitor at the end of the copy-phase is given by

1IN,1
9m

V1,1 = (D.19)
when the feedback switch has been turned off, we have a switched induced error voltage at
the storage capacitor given by (D.18), which implies that the voltage at the storage capacitor

has changed to )
1IN,

ULl = (I+a)-p (D.20)

m

Therefore the output current in the hold-phase is given by

tovr2 = —tina (1 + ) + gmf (D.21)

which shows that the output current will be a scaled version of the input signal and some
offset. The actual scaling factor will depend upon the slope of the clock signal used for
driving the switch. For very fast switching we have seen that o > 0, which implies that the
scaling factor will be larger than one !. And for slow switching we have that a < 0, which
implies that the scaling factor will be smaller than one !.

D.4 Integrator

In this section will try to describe how clock feedthrough and charge injection affect the
operation of a SI integrator. The analysis is based on the results found in the previous
section. In Fig. D.10 we have shown a SF'G representing a SI integrator including the effects
of clock feedthrough and charge injection. Using Mason formula and the SFG in Fig. D.10,
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Figure D.10: SFG showing the effect of clock feedthrough and charge injection in SI integra-
tors.

which represents the series connection of two current copiers, we get that the transfer function
from the input current ¢7x 1 and the offset 3 to the output current ipyr,1 is given by

: . (1+a)?z! 1—(1+a)z"12
= D.22
0UT,2 1IN,1 1 (1 n a)2271 +ﬁgm 1_ (1 ¥ a)2z*1 ( )
H;(2) Hp(2)

Because (3 is an offset term, independent of the frequency we have that its contribution to the

output signal of the integrator can be found by setting z = 1 (DC) in the transfer function

Hg (Z)

By Hp(2)mr = 5 2 o 200

which shows that it contributes with a small offset at the output of the integrator.
We also notice that clock feedthrough and charge injection affects the signal transfer

function H;(z). The poles of the transferfunction H;(z) are located at

(D.23)

Zpote = (1 + a)? (D.24)

from this equation we see that for fast switching i.e. @ > 0 the pole of the integrator is
expected to lie outside the unity circle making the integrator unstable.

A simulation of the impulse response of a SI integrator using fast switching shows that
the output of the integrator is not constant with time, but slowly ramps towards infinity and
eventually saturates at the bias current. This behavior clearly verifies that the integrator is
unstable and that the pole of the integrator is located outside the unit circle.



Appendix E

Noise in Sampled Data Systems

The subject of this appendix is to give the necessary background for calculating the noise in
analog sampled data systems [56]. This applies to both switched capacitor [57] and switched
current circuits [13]. This chapter is specially aimed at the treatment of optimization of SI
circuits given in Chapter 5.

E.1 Introduction

To describe a stationary statistical signal we make use of the autocorrelation function R(7) =
E{z(t)z(t+ 7)} and the power spectral density S(f) which is the fourier transformed of the
autocorrelation function [58].

The power of a noise signal is found by integrating the noise power spectral density over
the frequency band of interest. The noise must be bandlimited, otherwise we get infinite
power which is physically unrealizable.

White noise is the term applied to any zero-mean random process whose power spectral
density is a constant (a mathematical ideallity).

Example E.1.1

In order to illustrate the above terms we will make use of a familiar example. We will find
the mean square voltage across a noiseless capacitor shunted by a noisy resistor. The circuit
we are describing is shown in Fig. E.1. The thermal double sided power spectral density of

Figure E.1: Capacitor shunted by a noisy resistor
a noisy resistor is normally written as [59]
Sun(f) = 2kTR (E.1)
which corresponds to an autocorrelation function given by [58]

Ryn (1) =2KTR - 6(7) (E.2)

192
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This equation shows that there is no correlation between two noise samples taken from a
white noise source at two distinct times. The power spectral density of the noise voltage
across the capacitor can be found by the following equation [58]

where H(f) is the transfer function from the resistor noise source to the voltage across the
capacitor. We have that

1
|H(f)]> = e (E.4)
1+ (£)
Also the autocorrelation of the noise voltage across the capacitor is given by [58]
Rye(T) = Ryn(7) @ Rp(7) (E.5)

here ® is the convolution operator and Ry (7) is the autocorrelation of the impulse response
corresponding to the transfer function H(f). The autocorrelation function Rp(7) can be
found as

1 T
Rh('r) = RO . e_% (E6)
By combining (E.2) and (E.6) as shown in (E.5) we get that
kT -
Roelr) = e e (E.7)

The mean squared of the noise voltage across the capacitor can be found as R,.(0) which is

kT
Rye(0) = E{vc*} = el (E.8)
This result could also have been found by integrating the power spectral density of the
noise voltage across the capacitor S,.(f) over all frequencies. This is shown in the following

equations

By = [ sl (P (£9)
+o0 df
— 2kTR —= (E.10)
L
_ 2kTR-ﬁ (E.11)
kT
- 4 (E.12)

The above calculations show that the mean square of the noise voltage across the capacitor
is independent of the resistor. In general terms this is not correct which can easily be seen
from the fact that a zero resistance R = 0 intuitively should give a zero voltage across the
capacitor also a infinitely small capacitor should not give an infinite mean squared voltage
across the capacitor this is physically not possible.

The reason that the limiting cases R — 0 and C' — 0 do not hold is caused by the
assumption that the power spectral density of the thermal noise generated in the resistor was
not bandlimited i.e. it was assumed to be a white noise.

The term white noise is a mathematical ideallity that is physically not realizable, one
should be aware of that.
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A general expression for the mean squared voltage across the capacitor can be found
by correcting the power spectral density of the thermal noise from the resistor (E.1) for
quantum effects. It can be shown that the power spectral density should be multiplied by

the correction factor [59][60]
ht

L (E.13)

erT —1
where h is planck’s constant and f is the frequency. The 3dB cut-off frequency of this
correction factor is found at approximately 4000GHz, which is indeed a high frequency.
Therefore in practical situations the white noise source is not bandlimited by quantum effects
but by the circuit itself, and the correction factor can be omitted. Using the above correction
it can be shown that the mean squared of the noise voltage across an isolated resistor (C' — 0)
is given by
2 (wkT)?
3 h
Assuming that it could be possible to isolate a resistor of 1M at a temperature of 27°C,
the RMS noise voltage across the resistor would be 0.17V m

E{v’} =R

(E.14)

The above examples have introduced the terms necessary for describing noise, we have
also shown that the concept of noise bandwidth which is very important when dealing with
noise.

E.2 Sampling of Noise

In electronic circuits the noise sources are bandlimited by the signal processing system itself.
Also the limiting cases R — 0 and C' — 0 do not occur, therefore it is not necessary to take
into account quantum effects when calculating the noise powers.

The bandlimitation in the signal processing circuits is determined by the requirements
for the settling behavior, this is true both for switched capacitor and switched current cir-
cuits. Because of this the bandlimitation of the signal processing circuit itself is most often
somewhat higher that the sampling frequency fs of the system.

The effect of sampling a bandlimited analog noise source can be described by sampling
the autocorrelation function [58]. This is shown in the following equation.

+o00
Tup(t) = Rpp(t) - 67(t) , where 67(t) = Y §(t —nT) (E.15)

n=—oo

Here R,;(t) is the autocorrelation of the bandlimited analog noise source and ry;(t) is the
autocorrelation for the sampled analog noise (digital noise). The sampling is performed by
an infinite series of delta functions dp(t) located at the different sampling instances.

The power spectrum sp;(f) of the sampled analog noise source can now be found by
fourier transforming the autocorrelation function r,;(t) of the sampled analog noise.

1
AT

snb(f) Snp(f) @ fsby,(f) , where f =

+00
fs Z Snb(f_nfs) (EIG)

n=—oo

We have assumed that the analog noise was bandlimited, it can therefore be written as

Sun(f) = Sa(f) - |B()I” (E.17)
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where S, (f) is the power spectral density of the analog noise source before it is bandlimited
by the signal processing system |B(f)|?. If we insert (E.17) into (E.16) we get that the power
spectrum of the sampled analog noise is given by

+o00o
sub(f) = fs Z Sn(f_nfs)|B(f_nfs)|2 (E.18)

n=—oo

This equation shows that if the bandwidth of the analog noise is greater than half the sampling
frequency, there will be some aliasing of noise into the frequency band [— fs/2; +fs/2].

E.3 Sampling of White Noise

An analog white noise source has a power spectral density that is independent of the frequency
i.e. it can be written as

Sy (f) = 5y (E.19)
if we insert (E.19) into (E.18) we get that the power spectrum of a sampled bandlimited
analog white noise is given by

+00

sao(f) =Sifs > |B(f —nfo)l? (E.20)

n=—oo

Assuming that the bandlimiting function B(f) is a brick wall filter, the concept of undersam-
pling white noise is shown in Fig. E.2. The sampling of the bandlimited noise has the effect

A I 1 I
-3 S
[ -2 Lo
| 1 1 A | 1 1 I :_1: I : :3 I
-2 > 1 A R
: [ -n \/ I ! o] ]
: : I 0 I : Ly e 7 .
S =2 A 0 2 3 =3y <2 Fs1 0 1 fs 25 3y
s A I s
2 2 2 2
(a) (b)

Figure E.2: Tllustration of the undersampling of bandlimited white noise: (a) bandwith equal
to sampling frequency; (b) bandwidth equal to twice sampling frequency

of generating replicas, (—3,—2,—1, 1,2, 3) around multiples of the sampling frequency, of the
bandlimited noise (replica 0). When the noise is under sampled these replicas will overlap
as shown in Fig. E.2 and the total noise power found in the frequency range [—fs/2; + fs/2]
(shown as the gray areas) will be equal to the total noise power of the bandlimited noise
itself i.e. the effect of undersampling bandlimited white noise is that all of the noise power is
folded down into the frequency band [—fs/2; +fs/2].

Based on the fact that all of the noise power is folded down into the frequency band
[—fs/2;+fs/2] and on the fact that the resulting power spectrum of the undersampled
bandlimited white noise will be approximately white we can now conclude that the power
spectrum of the sampled white noise must be given by

Sap(f) =S¥ - BWN | where BWN = /_;OO |B(f)|%df (E.21)
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In the above equation BWN represents the double sided equivalent noise bandwidth.

Now we have an easy way of calculating the power spectrum of a sampled analog noise
source, all we have to do is to calculate the double sided noise bandwidth BWN. In Table E.1
we have calculated this noise bandwidth BWN for lowpass filters of different orders i.e. with
multiple poles at the cut-off frequency using the following equation.

BWN — / T d (E.22)

= (1 (4))

Table E.1: Noise Bandwidth BWN, for lowpass filters of order n.

| Order n | Noise bandwidth BWN

1 “o
2
9 1wo
2 2
3(4)0
3 —_ =
8 2
4 5w
16 2

Example E.3.1
This example will illustrate the effect of undersampling a white noise source that has been
bandlimited by a first order lowpass filter with the transferfunction shown below

BUE = ———p (E:23)

f )2
1+ (—
fo
From (E.20) we see that the shape of the power spectrum of the sampled noise is determined

by the sum
+o00o

> IB(f —nf)l? (E.24)
n=—oo
In Fig. E.3 I have plotted the above sum for two different ratios between of cut-off frequency
and sampling frequency.

The shape of the sum shown in Fig. E.3 tells us that the power spectrum of the sam-
pled noise will be approximately white. This especially true if we increase the degree of
undersampling.

From Fig. E.3 we see that if the bandwidth and the sampling frequency are equal the
sum is approximately equal to 7. We also see that when the bandwidth is twice the sampling
frequency the sum is approximately equal to 27. For a first order lowpass filter we therefore

conclude that
“+o00
Jo

—nfs 2~ .
n;OOIB(f o)l Is (E.25)



APPENDIX E. NOISE IN SAMPLED DATA SYSTEMS 197
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Figure E.3: Sum of the replica of the squared magnitude of the transfer function for a 1st
order lowpass filter

If we insert this relationship into (E.20) we get that the power spectrum is given by

suulf) = 53 fsn 9 = Synfo = Sy (5.20)

This is exactly the same result as we would have got if we had used (E.21) on a first order
lowpass filter i.e. the first row in Table E.1 m

E.4 Sampling of 1/f Noise

Low frequency 1/f noise has a power spectral density that can be written as

SYI(f) = % (B.27)

if we insert this equation into (E.18) we get that the power spectrum of the sampled 1/f
noise is given by

1/f = K 2
(D=5 3 gy BU = nf)l (E.28)

In the above equation the transfer function B(f) is the bandlimitation that the 1/f noise
is exposed to before it is sampled. The cut-off frequency of this bandlimitation will in most
sampled data systems be somewhat higher than the sampling frequency. Therefore the effect
of this bandlimitation on the sampled 1/ f noise will be very small at low frequencies and we
will assume that it can be neglected.

Based on this assumption we have that the power spectrum of the sampled 1/f noise is
given by

sl (1) = S - fs.f € [~ fs/2415/2) (F.29)
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The noise power of the sampled 1/f in the frequency band [fi; fo] is given by

2 f2 1/f J _3 fle/f & — fQSl/fd -
s par =5 [ s gsar =2 [ st (E30)

"= s

Example E.4.1
This example will illustrate the effect of sampling a 1/ f noise source that has been bandlim-
ited by a first order lowpass filter with the transferfunction shown below

B = ———
1+ (£)

In Fig. E.4 T have plotted (E.28) with K = 1 for this first order bandlimitation.

(E.31)
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Figure E.4: Shape of the power spectrum for a sampled 1/ f noise source

From Fig. E.4 we see that the aliasing of the sampled 1/f noise causes the noise floor
to raise. A wide bandwidth of the bandlimitation gives a higher noise floor. The level of
this noise floor is however small compared to the amplitude of the 1/f spectrum at low
frequencies, we will therefore assume that this raise in the noise floor can be ignored. m

E.5 Noise power at the output of a large system

In most sampled data systems there will be more than one noise source contributing to the
overall noise at the output of the system. Considering only sampled noise sources it is fairly
easy to calculate the noise power at the output of any sampled data system. Assuming that
all the noise sources are uncorrelated, the noise power at the output of the system can be
found by integrating the sum of products of the power spectrum of the sampled noise sources
and their respective numerically squared transfer functions to the output.

For white noise sources the noise power at the output of the system is described by the
following equation

+fs/2
P = fi/_f p (s%(f)le(f)IQ+---+s:m(f)|Hnm(f)|2) df (E.32)
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in this equation H,;(f) is the transfer function from the white noise source s¥; to the output.
Using Parsevals theorem the above equation can be rewritten as

+oo +o00o
Po= sy > bkl + o+ s D b [K] (E.33)
k=0 k=0

in this equation h,;[k] represents the impulse response sequence from the white noise source
s¥. to the output.

For lowfrequency 1/f mnoise sources the noise power at the output of the system in the
frequency band [f1; fo] is given by

fa
B = fz /f (s (DHaa (DI + -+ YLD Hum(HF) df (E31)

E.6 Correlated Double Sampling (CDS) of 1/f Noise

In switched current circuits we often have that the lowfrequency 1/ f noise is exposed to corre-
lated double sampling (CDS). Correlated double sampling has its origin in the current copier
cell, and has the effect of frequency shaping the 1/ f noise with the following transferfunction

H(z)=1—2z"1/? (E.35)

Correlated double sampling is also often used in switched-capacitor circuits for suppressing
offset voltages and low frequency 1/f noise. If we insert z = €227 into (E.35) we get that

HP = 4-sin* (5 - ) (E.30)

Based on (E.27) and (E.29) we have that the power spectrum of a sampled 1/ f noise source
can be written as i

s/ 1(f) = fs- Il (B.37)

Using (E.34) we can now calculated the noise power of the sampled 1/f noise with CDS, we
get

G R (1.38)
fs 0
B 2 fs/QS'L.TLQ(%"jé)
- 4Kfs-ﬁ/0 — (E.39)
B /4 sin?(u)
— 8K /0 2 du (E.40)
— 8K -0.2784 (E.A1)

= 2.2272K (E.42)



Appendix F

Matching Errors

It is of great interest to know how matching errors influence on the behavior of switched
current circuits. This is so because matching will determine how accurately we fx. can make
possible filter coefficients e.t.c. Matching errors can also be a source of distortion.

In this appendix we will illustrate how mismatch between different transistor parameters
influences the performance of a current copier. We will also show how biasing and transistor
geometry affects the statistical properties of the matching mechanisms.

F.1 Introduction

To illustrate the effect of matching errors we will make use of the current copier shown in
Fig. F.1 On clock phase 1 (Copy phase) the switch S; and Ss are closed. The effect of this

1 1
. N S,
llN,l —)—1/ -
. S3 2 .
lour, —— n Lour:
1, f,(v) ‘T L f,(v)

Figure F.1: A Current Copier with an extra current output

is that the current copier acts as a current mirror between ¢;y,1 and ioyr2.
From Fig. F.1 we get the following relationship for the output current.

. 1,4N
iovr2 = —Izfo (f1 1(1—1)> (F.1)
this equation shows that if the two nonlinearities f1(-) and fo(+) are the same we would get
a perfectly linear relationship between the output current and the input current, and this

relationship would be given by
I

touT2 = —UIN 7 (F.2)
L

Because of mismatch errors the two nonlinearities f1(-) and fo(-) are not the same and we
do not necessarily get a linear relationship between the input current ¢;y,; and the output
current ipyre. Such a situation is best illustrated by a small example.

200
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Example F.1.1
We will now assume that the transconductors in Fig. F.1 are implemented using simple MOS
transistors. This leads to the circuit shown in Fig. F.2. From Fig. F.2 we get the following

I, —>» i
N1 our?

M1} || M2

CTK

=+

Figure F.2: A simple implementation of a Current Copier; with a extra current output; in
its copy phase i.e. phase 1

relationships for the voltage and currents in the current copier

2([1 + Z']NJ)
b1

iour2 = Iz — % (v — Vp,)? (F.3)

v="Vp +

From (F.3) we get that the output current can be written as
2

+ (VT1 — VTQ) (F4)
—_———
AV

I I 2(11 +1
= [ (5—2——1) — IIN,I& - %AV% — B AVr A+ i) (F.5)
2 B 2 B
1st Term 2nd Term 3rd Term 4th Term

) B B2 2(I +irnp1)
iovre = L— = || ————

2 b

From this equation we make the following conclusions

e Scaling errors are caused by mismatch in the transconductance parameter 3 as seen
from the 2nd term.

e Offset errors are caused by mismatch in the transconductance parameter 3 and in the
threshold voltage AVp as seen from the 1st and the 3rd term.

e Distortion is caused by the mismatch in threshold voltage AVy as seen from the 4th
term. The amplitude of the harmonics can be found by Taylor expanding the 4th term.

A somewhat similar calculation has been performed by others [51][6][7] m

Scaling errors and offset errors are in most situations less critical than distortion errors.
Therefore in order to reduce the distortion in switched current circuits we have to match
the components as well as possible and at the same time we note that distortion only arises
because of mismatch when the transconductors are nonlinear. Therefore it is advisable to
use linearized transconductors for low distortion switched current circuits.
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The factors determining the actual mismatch can be divided into systematic errors and
statistical errors [61].

The systematic errors are such as etching errors and lithographic errors e.t.c. These errors
can be reduced by using unity transistors [61].

The statistical errors are among other things caused by statistical variations of the oxide
thickens, the dopant atoms in the bulk and of the mobility [62][63].

F.2 Single MOS transistor

In the previous analysis we have assumed that the MOS transistors are operating in strong-
inversion and saturation and that the relationship between drain current and gate-source
voltage is given by

. _ B

ip =7 (vas — Vr)? (F.6)
in this equation we will assume that § and Vp are stocastic variables

The variance of the drain current ¢ p for a given gate—source voltage vgg can be calculated
by Taylor expanding (F.6) around the mean value of 5 and Vp. The mean value of 8 and Vp
is denoted by 3 and V7. Using this approach we get the following relationship
dip — Oip
87__+(VT*VT) avr
& B,Vr

oVr
from this equation the variance of the drain current can be found as
2 2 [ Oip

2 2
8iD aiD aZ.D
7o T < o3 By?) oV ((WT m) ( a5 B,V—T> <3VT

Both theoretical and experimental results have shown that the correlation between 8 and Vi
is very small [62] and can be considered as zero. Therefore we have that Cov(3, V) ~ 0.
From (F.6) we get that

ip=1ip+ (8—P)

L (F.7)
B,Vr

B.Vr

) Cov(B,Vr) (F.8)

3 —\2

iD = g (UGS — VT) (Fg)
8iD o 1 —\2
96 5 2 (vcs - VT) (F.10)
dip| = -
—8VT EV_T = —,6 (UGS - VT) (F.ll)

if we insert these equations into (F.8) we get that variance of the drain current can be written
as

1 —\4 —9 —\2
UiQD = ng (UGS — VT> + U‘Z/Tﬁ (UGS — VT) (F.l?)
therefore the relative variance of the drain current can be written as

2 2

2 _ 9% % 4
e e P 2
ip g~ Vr (”5:5 — 1)

T

(F.13)

this equation shows that it is very important that the gate-source voltage is made somewhat
larger than the threshold voltage in order to reduce the relative error of the threshold voltage.

Put in an other way; MOS transistors with very low saturation voltages (vgs — V) have
very poor matching characteristics due to variations in the threshold voltage.
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The transconductance parameter 3 is determined by
%%
B = fuC’ox (F.14)

from this equation we get that the relative variance of (3 is given by (assuming that all of the
parameters are uncorrelated)

2 2 2 2 2
g o o g T v
Bﬁ =2w zé +ﬁ_l; + % (F.15)
W ox

1st Term 2nd Term

the 1st term in the above equation represents the statistical edge variations and the 2nd term
represents the statistical variations in the mobility and in the gate oxide. It can be shown [62]
that the relative variance of the transconductance parameter § and of the threshold voltage
Vi can be represented as

93 oy, or . 45
- - — + j— + == (F.16)
62 W2 L2 WL
2 A2
- (F.17)
Vi WL

Example F.2.1
For a typical 3um CMOS process [62] we have that:

or ~ow =~ 0.01pm to 0.03um
Ag = 0.006pm
ANMOS = 0.016V um
T
AEMOS — 0.031V um
T

The PMOS transistor in this process has an additional threshold adjust implant, which
causes a larger threshold voltage mismatch for the PMOS transistor than for the NMOS
transistor.

For A PMOS transistor with the following parameters:
W = 33um, L = 3um, Vp = 0.5V and vgs — Vo = 0.1V
we get the following matching properties:

0% 70.02um\?  [0.02um\> 0.006 2
% _ (ﬂ) i ( ”m) n <i> — 44.81543 - 107
8 33um 3um 3um - 33um

oy 0.031V pm)?
Ty _ (OO3LVHm)” _ g o707 10-6y2
Vi Sum - 33um
If we insert the above results into (F.13) we get that the relative variance of the drain current
is given by
2

Tin — 44.81543 - 1076 + 9.70707 - 10~6V2
D (0.2V)2
this shows that it is the threshold voltage that is the dominating error source because of the

low saturation voltage. The relative standarddeviation of the drain current is now given by

= 44.81543 - 107% 4 970.7070 - 1076

Tip _ (.03187 ~ 3.2%

D
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F.3 Parallel connection of unity transistors

One way of reducing both systematic and statistical matching errors is by using unity tran-
sistors [61]. In Fig. F.3 we have connected N unity transistors in parallel giving a equivalent
of one transistors IV times wider than a unity transistor.

Lour

Figure F.3: Parallel connection of N unity transistors

From Fig. F.3 we see that the output current is given by
tour =11 +i2+ - +in (F.18)
and that the mean value of the output current is given by
iour = Ni, (F.19)
where 7, is the nominal output current in each transistor. Assuming that the transistors are
uncorrelated, the variance of the output current is given by

o2 =No2 (F.20)

iouT
by combining (F.19) and (F.20) we get that the relative standarddeviation of the output

current, from the parallel connected unity transistors, is given by

Tiour _ _L_T (F.21)
oUT VN 1

This equation shows that the relative standarddeviation of the output current is reduced by

the square root of the number of unity transistor in parallel.

F.4 Current mirror using unity transistors

Most of the current scaling performed in switched current circuits is performed using some
sort of current mirror. Even the current copier with an extra current output operates as a
current mirror in the copy phase.
Until now we have only considered statistical errors for a single MOS transistor and for
a parallel connection of unity transistors. It is however more interesting to investigate the
matching error in a current mirror build from unity transistors.
In Fig. F.4 we have a current mirror build from N + M unity transistors and giving a
current ratio of ] ) ) )
m — ouT _ i T2+ -+ Um
iIN  t91 2o+ tion

(F.22)

the mean current ratio is given by

m=— (F.23)
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Figure F.4: Current mirror made from unity transistors
and the relative variance of the current ratio is given by
"m_fn _ % % (F.24)
2 2

- ]\14‘;_02 JIV; (F.25)
= ;::23 (% + %) (F.26)

This equation shows that the accuracy of the current mirror is increased by increasing the
number of unity transistors used in the current mirror. This effectively reduces the effect of
mismatches in the threshold voltages among the unity transistors, which in turn reduces the
nonlinearity of the current mirror.
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