Chapter 3

Design of Switched Current
Building Blocks

In this chapter we show how current copiers can be used in the design of many of the most
fundamental ST building blocks. The building blocks described in this chapter are; Sample
delays, Delay lines, Integrators and Differentiators.

We also discuss how current transmission errors limit the performance of the building
blocks.

3.1 Sample Delays

The sample delay is one of the fundamental signal processing operations in digital signal
processing circuits and in analog sampled data systems. It is therefore very interesting to
know how to build sample delays using switched current circuits, because it is the backbone
in many of our building blocks e.g. the integrator.

We have previously seen that the current copier, in itself, is an inverting delay of a half
clock period i.e. its transfer function can be described as

H(z)=—2z"1/? (3.1)
A sample delay i.e. a delay of one clock period has a transfer function given by
H(z)=z"! (3.2)

From the above equations it is therefore obvious that a sample delay is naturally constructed
by cascading two current copiers as shown in Fig. 3.1. From the SFG in Fig. 3.1 we see that
the overall transfer function formed by the cascading of two current copiers is given by

H(z)= (=% (=21 =27 (3-3)

which is a sample delay as expected.

In Appendix C and in Chapter 2 we have shown that all current copiers have some degree
of current loss. The effect of this current loss is that the output current from the CCOP is
slightly smaller than the input current. The effect of this, on SI building blocks, is easily
taken into account by replacing the ideal CCOP transfer function

H(z)=—z"1/? (3.4)
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Figure 3.1: Sample Delay made from cascading of two current copiers

with the modified transfer function
H(z)=—(1—¢)z"1?2 (3.5)

where € denotes that current transmission loss.
The transfer function of the sample delay, taking into account the current loss, is now

given by
Hz) =(—1-z") (—1-ez ") =1 —-e?2z '~ (1—2)2"" (3.6)

This equation shows that the sample delay will have almost twice the current loss of a single
CCOP.

The topology of the sample delay shown in Fig. 3.1 applies to all of the Cascode current
copiers described in the previous chapter with the exception of the Cascode IT CCOP, this
is easily seen if we replace the transconductors in Fig. 3.1 by the transconductors used in
Fig. 2.2 and Fig. 2.3 that have been enhanced by current conveyors.

A sample delay made from the Cascode II structure is shown in Fig. 3.2. This sample
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Figure 3.2: Sample Delay made from cascading of two Cascode II current copiers

delay might look a little bit complicated because it contains two current conveyors, but we
notice that the two current conveyors (CCII—) operate on opposite clock phases and can
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Figure 3.3: (a) Simplified Delay made from cascading of two Cascode II CCOP’s; (b) Final
Sample Delay made from cascading of Cascode 1T CCOP’s

therefore be replaced by a single current conveyor that is shared by the two transconductors,
as shown in Fig. 3.3 (a).

By investigating this figure we see that it is possible to move the switch S so that it is in
parallel with the switch S (shown as the dashed switch) without altering the functionality
of the circuit. The two switches S1 and S5 that now are in parallel operate on opposite clock
phases, the effect of this is that these two switches can be replaced by a short circuit, which
leads us directly to the circuit shown in Fig. 3.3 (b).

To illustrate how the sample delay shown in Fig. 3.3 (b) can be implemented, we have
made two examples as shown in Fig. 3.4. In both examples the transconductors are imple-
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Figure 3.4: (a) Cascode implementation of sample delay; (b) Folded Cascode implementation
of sample delay

mented as single NMOS transistors M1 and M2. In the first example (a) the current conveyor
(M3) is implemented using a NMOS transistor and in the second example (b) the current
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conveyor (M3) is implemented using a PMOS transistor.
The storage capacitor shown as C can be the gate-source capacitor of the transistors M1
and M2.

3.2 Delay Lines

An other rather important building block in digital signal processing circuits and in analog
sampled data systems is the delay line. The delay line is for instance a fundamental building
block in FIR filters. It is therefore very interesting to know how to build delay lines in
switched current circuits,

3.2.1 Cascade

The most obvious way to construct a delay line is to cascade several sample delays. Such an
arrangement is shown in Fig. 3.5. The transfer function from the input to the N’th output
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Figure 3.5: Delay Line made from cascoding of sample delays

is given by

Hy(z) = (z )N =27 (3.7)
If we however take into account the current loss found in each sample delay we get that the
overall transfer function of the delay line is given by

Hy(z)=(1—e?2 HYN =1 - )Nz VN ~ (1 —2Ne)z N (3.8)

One advantage of this concept is that it is relatively easy to get tapped outputs from the
delay line by simply adding some extra output transconductor to the current copiers used for
building the sample delays. In this way it is relatively easy to construct a FIR filter, simply
by adding together the extra current outputs of the tapped delay line.

There is however one drawback with this delay line which is that the signal entering the
delay line has to travel through several sample delays before it leaves the delay line. This, of
course, will deteriorate the signal and introduce distortion and noise.

3.2.2 Polyphase

One way of overcoming the limitations of the cascade delay line, is to introduce a new non-
overlapping clock phase for each sample delay and then make use of the topology shown in
Fig. 3.6. In the polyphase delay line, each current copier holds a signal sample for N clock
periods in contrast to the cascade delay line, where each current copier only holds a signal
sample for one clock period. From Fig. 3.6 we see that the transfer function from the input
to the output is given by
Hy(z) = —(z HNVN = ¥ (3.9)
Because the signal current only passes through a single CCOP the current loss will be limited,
and the overall transfer function of this polyphase delay line including current loss is given
by
Hy(z)=—-(1—-&(z"HYN = —(1-¢)2zV (3.10)
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Figure 3.6: Polyphase delay line

3.3 Integrators

The integrator is one of the most widely used building block in all analog signal processing
circuits. It is a very versatile component that can be used in the design of almost any filter.

The backbone in the design of integrators is the sample delay. By feeding the output
of the sample delay back to its input together with the input signal we get a accumulating
effect which is necessary for making an integrator.

3.3.1 Inverting and Non-inverting Integrators

If we take the sample delay shown in Fig. 3.1 and feed the output back to the input together
with some external input signal and at the same time add two extra output transconductors
to the current copiers in the sample delay, we get the integrator shown in Fig. 3.7 (a). The
two output transconductors have optional scaling factors a and b that are used to control the
gain of the integrator outputs.

By investigating the integrator shown in Fig. 3.7 (a) we see that the switch Sz and S3 are
operating on opposite clock phases. Also we notice that the switch Sj3 is logically in parallel
with the switch S therefore these two switches can be replaced by a short circuit. This leads
us directly to the simplified integrator shown in Fig. 3.7 (b).

A signal flow graph SFG, representing the integrator in Fig. 3.7 (a), is shown in Fig. 3.8.
From this SFG the transfer functions, from the input i7x 1 to the inverting output ioyri 1
and the non-inverting output ¢py72,1 is now easily calculated. Using Masons formula we get
that the two transfer functions are given by

Iout,l a

Hin(2) = Iy 1271

(3.11)
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Figure 3.7: (a) Inverting and Noninverting Integrator; (b) Simplified Integrator
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Figure 3.8: SFG for the Inverting and Noniverting Integrator

Iout,2 bzt
HNom'nv(z) = Im,l = 1— 1 (3.12)
If we take into account the effect of the current transmission error we get the following

transfer function for the integrator.

Iout 1 a a
() = loud _ ~ 3.13
[m)(z) Iin,l 1_ (1 . 6)2271 1— <1 — 26)271 ( )
Lotz b(1—e)z! b(l—e)z"
ooy T _ ~ 3.14
Nomm)(z) Iin,l 1— (1 _ 6)22_1 1— (1 — 26)2_1 ( )

The ideal integrator has a DC-gain of oo but because of the current loss the DC-gain will be
limited to some finite value. The DC-gain of the integrator can be found by setting z =1 in
the transfer function. If we do so we get that the DC-gain at the two integrator outputs is

approximately given by

a

Hlnv<z)|z:1 = 72_6 (315)
b

HNom',m)(z)|z:1 =~ % (316)

The topology of the integrator shown in Fig. 3.7 applies to all of the Cascode current
copiers described in the previous chapter with the exception of the Cascode II CCOP, this
is easily seen if we replace the transconductors in Fig. 3.7 by the transconductors used in
Fig. 2.2 and Fig. 2.3 that have been enhanced by current conveyors.
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A integrator based on Cascode II current copiers can be designed by feeding the output
of a Cascode II sample delay, shown in Fig. 3.3 (b), together with an external input signal
back to its input and at the same time add two extra output transconductors to the current
copiers in the sample delay, we get the integrator shown in Fig. 3.9 (a).
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Figure 3.9: (a) Inverting and Noninverting integrator based on Cascode II current copiers;
(b) Simplified Inverting and Noninverting integrator based on Cascode II current copiers

By investigating the integrator in Fig. 3.9 we notice that the switches So and Ss are
logically in parallel and operating at opposite clock phases. These switches can therefore
be replaced by a short circuit. This leads us directly to the simplified integrator shown in
Fig. 3.9 (b).

To illustrate how the integrator shown in Fig. 3.9 (b) can be implemented, we have made
two examples as shown in Fig. 3.10. In both examples the transconductors are implemented
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Figure 3.10: (a) Cascode implementation of the integrator; (b) Folded Cascode implementa-
tion of the integrator

as single NMOS transistors M1,M2,M3 and M4. In the first example (a) the current conveyor
(M5) is implemented using a NMOS transistor and in the second example (b) the current
conveyor (M5) is implemented using a PMOS transistor.
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3.3.2 Bilinear Integrator

In some situations it might be advantageous to have a bilinear integrator i.e. an integrator
with a transfer function given by

T 1+ 271
T 21—t
Such an integrator has the property that the transfer function at half the sampling frequency
is zero i.e. H(z)|,=—1 = 0. The effect of this is that filters based on bilinear integrators often
have a desirable zero in their transfer functions at half the sampling frequency.

The easiest way to construct a bilinear SI integrator is to use fully differential SI circuits.
An example of a fully differential bilinear integrator is shown in Fig. 3.11.
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Figure 3.11: Fully differential bilinear integrator

This bilinear integrator has actually two outputs; one bilinear output ipy7; and one
ordinary noninverting integrator output ¢ogr2. The actual transfer functions from the input
irn to the two outputs is given by

14271
HBilin(Z) = *aﬁ (3.18)
271
HNonim;<Z) == 2bm (319)

The operation of this bilinear integrator is based on the assumption that the input signal
current 7y is valid at the input on both clock phase 1 and 2. In a similar way the output
current at the bilinear output is also valid on both clock phase 1 and 2. Because of this
cascading of bilinear integrators is possible.

In practical circuit designs it is however not desirable to cascade bilinear integrators
because the signal currents have to settle throughout all of the integrators on clock phase 1.
This also applies to the ordinary inverting integrator.

Generally, all sampled data systems that do not contain at least a single sample delay
should not be cascaded because of the settling problems implicated by that construct.

3.4 Differentiators

Another very useful building block is the differentiator. It has not been used very much in
filter design, but it can be very useful.
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For building switched current differentiators we will make use of the core component
shown in Fig. 3.12. In order to make this circuit work, the input signal has to be sampled
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Figure 3.12: (a) Core component in all switched current differentiators; (b) Simplified Core
component used in all switched current differentiators

and held for a whole clock period i.e. on both clock phase 1 and 2. In Fig. 3.12 (a) we have
shown a SFG illustrating the signal flow in the core component. Using Masons formula we
can now easily calculate the transfer function as being

Ioy - - -
HE =y oy (320

If we take into account the current loss found in the CCOP we get that the transfer function
of the differentiator is given by

[out71

H(z) = =142 (—1- V) =(1—2" ) +e! (3.21)

Iina
which shows that the current loss leaks some of the input signal to the output of the integrator.
The DC-gain of an ideal differentiator is zero, but the DC-gain of the leaky differentiator is

H(z)|.=1 =€ (3.22)

By investigating the circuit in Fig. 3.12 (a) we see that the switches S7 and Sy are
logically in parallel and operating on opposite clock phases. Therefore these two switches
can be replaced by a short circuit as shown in Fig. 3.12 (b).

One problem with the core circuit shown in Fig. 3.12 (b) is that it is not possible to
cascade them. The reason for this is that the input signal must be valid in both clock phase
1 and 2, but the output signal is only valid on clock phase 1. To circumvent this a track and
hold can be placed at the output of the core component, making the output signal valid for
both clock phases. Such an arrangement is shown in Fig. 3.13 (a). The track and hold has
an optional scaling factor a, giving an transfer function of

H(z) = —a(1—z71) (3.23)

Thus we have an inverting differentiator with an optional scaling a. By exchanging the
differentiator and the track and hold, we arrive at the circuit shown in Fig. 3.13 (b), which
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Figure 3.13: (a) Differentiator followed by a Track and Hold; (b) Track and Hold followed
by a Differentiator

of course will have the same transfer function as the differentiator in Fig. 3.13 (a). The only
difference is that the signal only have to be valid on clock phase 1.

The topology of the differentiator shown in Fig. 3.13 applies to all of the Cascode current
copiers described in the previous chapter with the exception of the Cascode II CCOP, this
is easily seen if we replace the transconductors in Fig. 3.13 by the transconductors used in
Fig. 2.2 and Fig. 2.3 that have been enhanced by current conveyors.

A differentiator made from the Cascode II structure is shown in Fig. 3.14 (a). By inves-
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Figure 3.14: (a) Differentiator based on the Cascode II current copier; (b) Simplified differ-
entiator

tigating this circuit we see that the switches S7 and S3 are logically in parallel and operating

on opposite clock phases. Therefore the switch S7 can be replaced by a short circuit and the
switch S3 removed, as shown in Fig. 3.14 (b).

To illustrate how the differentiator shown in Fig. 3.14 (b) can be implemented, we have
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made two examples as shown in Fig. 3.15. In both examples the transconductors are imple-
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Figure 3.15: (a) Cascode implementation of differentiator; (b) Folded Cascode implementa-

tion of differentiator
mented as single NMOS transistors M1, M2 and M3. In the first example (a) the current
conveyor (M4) is implemented using a NMOS transistor and in the second example (b) the

current conveyor (M4) is implemented using a PMOS transistor.
The storage capacitor shown as C' can be the gate-source capacitor of the transistors M1

and M2.



